Implementation of the SoftMax Activation for Reconfigurable Neural Network Hardware Accelerators

Author:

Shatravin Vladislav1ORCID,Shashev Dmitriy1ORCID,Shidlovskiy Stanislav1ORCID

Affiliation:

1. Faculty of Innovative Technologies, Tomsk State University, Tomsk 634050, Russia

Abstract

In recent decades, machine-learning algorithms have been extensively utilized to tackle various complex tasks. To achieve the high performance and efficiency of these algorithms, various hardware accelerators are used. Typically, these devices are specialized for specific neural network architectures and activation functions. However, state-of-the-art complex autonomous and mobile systems may require different algorithms for different tasks. Reconfigurable accelerators can be used to resolve this problem. They possess the capability to support diverse neural network architectures and allow for significant alterations to the implemented model at runtime. Thus, a single device can be used to address entirely different tasks. Our research focuses on dynamically reconfigurable accelerators based on reconfigurable computing environments (RCE). To implement the required neural networks on such devices, their algorithms need to be adapted to the homogeneous structure of RCE. This article proposes the first implementation of the widely used SoftMax activation for hardware accelerators based on RCE. The implementation leverages spatial distribution and incorporates several optimizations to enhance its performance. The timing simulation of the proposed implementation on FPGA shows a high throughput of 1.12 Gbps at 23 MHz. The result is comparable to counterparts lacking reconfiguration capability. However, this flexibility comes at the expense of the increased consumption of logic elements.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3