Modeling and Simulation of a Two-Stage Air-Cooled Adsorption Chiller with Heat Recovery Part II: Parametric Study

Author:

Makahleh Firas M.,Badran Ali A.,Attar Hani,Amer Ayman,Al-Maaitah Ayman A.

Abstract

This study is the second part of the theoretical study of “Modeling and Simulation of a Two-Stage Air-Cooled Adsorption Chiller with Heat Recovery”, which is based on developing a theoretical model for a two-stage adsorption chiller with an activated carbon/methanol pair. The following models were conducted numerically using MATLAB. The model was based on 10th order differential equations; six of them were used to predict bed, evaporator and condenser temperatures, while the other four equations were used to calculate adsorption isotherm and adsorption kinetics. In this second part, bed heat exchangers and evaporator and condenser heat exchangers are studied by varying the parametric design of a chiller. This includes but is not limited to activated carbon mass inside a single bed, overall heat transfer coefficient for the bed and evaporator and the mass flow rates of all components comprising the chiller. The optimum values increased the COP from 0.35 to 0.4, while the cooling capacity was slightly changed. The COP is 95% of a Carnot cycle working at hot water temperatures as low as 60 °C, and 90% at hot water temperatures as high as 90 °C. It was found that the simulation model results for the two-stage air-cooled chiller agreed well with the experimental data in terms of cooling capacity (6.7 kW for the model against 6.14 kW for the experimental result at 30 °C cooling water temperature). The model optimized the adsorption/desorption time, switching time and heat recovery time to maximize both cooling capacity and COP. Moreover, the model is used to study the effect of activated carbon mass, size of beds and mass flow rates of cooling, heating, chiller and condenser on both cooling capacity and COP.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3