Research and Application of a Prefabricated Spatial Reticulated Shell Support System for Large Cross-Section Tunnel in a Complex Urban Environment

Author:

Huang Mingli,Song YuanORCID,Zhang Xudong

Abstract

To solve the technical problems of slow construction progress, low mechanization and high risk of shallow buried large cross-section tunnels in a complex urban environment, a series of spatial reticulated shell (SRS) support structures are developed in this paper. Moreover, the equipment of a multifunctional operation trolley is developed to install the SRS arch, and the construction technology system of the prefabricated SRS structure is proposed for a large cross-section tunnel. Therefore, the deformation characteristics of the end-plate joint component and jointless component are clarified by laboratory experiments. The construction mechanics’ simulation of the SRS arch is performed to obtain the tunnel deformation and structure stress based on the tunnel project of Panyu Square Station of Guangzhou Metro. A field application of the prefabricated SRS arch is carried out to realize the mechanized construction operation. The obtained results reveal that the end-plate joint component has better ductility, and its ultimate bearing capacity is basically consistent with the jointless component. The SRS arch can effectively control the deformation of the surrounding rock, improve the stress state of the structure, and reduce the plastic zone of shotcrete by numerical simulations. The overall stress of the SRS arch by field measurement represents the characteristics of “bigger on the upside and smaller on the downside” and “uneven symmetry”. Additionally, the successful application of the prefabricated SRS arch provides a scientific reference for mechanized construction of large cross-section tunnels.

Funder

the General Program of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3