Microstructure, Phase Formation and Heat-Treating of Novel Cast Al-Mg-Zn-Cu-Si Lightweight Complex Concentrated Aluminum Based Alloy

Author:

Chaskis SpyridonORCID,Stachouli Eva,Gavalas EvangelosORCID,Bouzouni MarianthiORCID,Papaefthymiou SpyrosORCID

Abstract

In the current work, a novel complex concentrated aluminum alloy is designed and studied. In order to investigate the unknown region of the multicomponent phase diagrams, thermo-physical parameters and the CALPHAD method were used to understand the phase formation of the Al58Mg18Zn12Cu5Si7 at.% (Al47.4Mg13.3Zn23.8Cu9.6Si6wt.%) alloy with a low-density of 2.63 g/cm3. The CALPHAD methodology showed good agreement with both the investigated microstructure and the thermodynamic parameters. The designed alloy was manufactured using an induction furnace and pour mold casting process. This study avoids the use of expensive, dangerous or scarce alloying elements and focuses instead on the utilization of widely available relatively cheaper elements. The microstructural evolution as a function of the heat-treatment was studied by means of different microstructural characterization techniques. The hardness, compressive strength and electrical conductivity of the as-cast and heat-treated alloy at room temperature were studied and correlated with the previously characterized microstructure. The alloy is characterized by a multiphase microstructure with major α-Al matrix reinforced with various secondary phases. In terms of mechanical properties, the developed alloy exhibited a high hardness value of 249 Vickers and compressive strength of 588 MPa. The present work provides a valuable insight for researchers, who aim to design and produce industry-like Aluminum based complex concentrated alloys (CCAs).

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3