Compositional Design and Thermal Processing of a Novel Lead-Free Cu–Zn–Al–Sn Medium Entropy Brass Alloy

Author:

Chaskis Spyridon1ORCID,Maritsa Stavroula1ORCID,Stavroulakis Paul2ORCID,Papadopoulou Sofia3,Goodall Russell2ORCID,Papaefthymiou Spyros1ORCID

Affiliation:

1. Laboratory of Physical Metallurgy, Division of Metallurgy and Materials, School of Mining and Metallurgical Engineering, National Technical University of Athens, 9, Heroon Polytechniou Street, 15780 Athens, Greece

2. Department of Materials Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Portobello Str., Sheffield S1 3JD, UK

3. Department of Physical Metallurgy and Forming, Hellenic Research Centre for Metals (ELKEME S.A.), 61st km Athens-Lamia National Road, 32011 Oinofyta, Greece

Abstract

In the current work, a novel medium entropy copper alloy was designed with the aim of avoiding the use of expensive, hazardous or scarce alloying elements and instead employing widely available and cost-effective alternatives. In order to investigate this unknown region of multicomponent alloy compositions, the thermo-physical parameters were calculated and the CALPHAD method was utilized. This led to the design of the Cu50Zn25Al20Sn5 at. % (Cu53.45Zn27.49Al9.08Sn9.98 wt. %) alloy with a relatively low density of 6.86 g/cm3 compared with conventional brasses. The designed alloy was manufactured through vacuum induction melting, producing two ingots weighing 1.2 kg each, which were subjected to a series of heat treatments. The microstructural evolution of the alloy in the as-cast and heat-treated conditions was assessed through optical and scanning electron microscopy. The hardness of the as-cast and heat-treated alloy at room temperature was also studied. The alloy was characterized by a multiphase microstructure containing a major Cu-rich (Cu–Zn–Al) matrix reinforced with a secondary Zn-rich (Zn–Cu) phase and pure Sn. In terms of mechanical properties, the developed alloy exhibited high hardness values of roughly 378 HV0.2 and 499 HV0.2 in the as-cast and heat-treated conditions, respectively.

Funder

EPSRC

Centre for Doctoral Training in Advanced Metallic Systems

Publisher

MDPI AG

Reference44 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3