Influence of the Material Production Route on the Material Properties and the Machinability of the Lead-Free Copper-Zinc-Alloy CuZn40 (CW509L)

Author:

Brans Kilian1,Kind Stefan1,Meurer Markus1ORCID,Bergs Thomas12

Affiliation:

1. Manufacturing Technology Institute MTI, RWTH Aachen University, Campus Boulevard 30, 52074 Aachen, Germany

2. Fraunhofer Institute for Production Technology IPT, Steinbachstr. 17, 52074 Aachen, Germany

Abstract

To improve the machinability properties of CuZn-alloys, these are alloyed with the element lead. Due to its toxicity, a variety of legislative initiatives aim to reduce the lead content in CuZn-alloys, which results in critical machinability problems and a reduction in the productivity of machining processes. Basically, there are two ways to solve the critical machinability problems when machining lead-free CuZn-alloys: optimizing the machinability of lead-free materials on the material side or adapting the processes and the respective process parameters. In this study, the focus is on material-side machinability optimization by investigating the influence of a targeted variation in the process chain in the material production route. To evaluate the influence of the material production route, the brass alloy CuZn40 (CW509L) was produced in four variants by varying the degree of work hardening and the use of heat treatments, and all four variants were evaluated in terms of their machinability. To evaluate the machinability, the cutting force components, the chip temperature, the chip formation, and the chip shape were analyzed. Clear influences of the material production route were identified, particularly with regard to the chip formation mechanisms and the resulting chip shape.

Funder

Innovation Network Copper Processing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3