Road Extraction in Mountainous Regions from High-Resolution Images Based on DSDNet and Terrain Optimization

Author:

Xu ZeyuORCID,Shen Zhanfeng,Li YangORCID,Xia Liegang,Wang Haoyu,Li Shuo,Jiao Shuhui,Lei Yating

Abstract

High-quality road network information plays a vital role in regional economic development, disaster emergency management and land planning. To date, studies have primarily focused on sampling flat urban roads, while fewer have paid attention to road extraction in mountainous regions. Compared with road extraction in flat regions, road extraction in mountainous regions suffers more interference, due to shadows caused by mountains and road-like terrain. Furthermore, there are more practical problems involved when researching an entire region rather than at the sample level. To address the difficulties outlined regarding mountain road extraction, this paper takes Jiuzhaigou county in China as an example and studies road extraction in practical applications. Based on deep learning methods, we used a multistage optimization method to improve the extraction effect. First, we used the contrast limited adaptive histogram equalization (CLAHE) algorithm to attenuate the influence of mountain shadows and improve the quality of the image. Then the road was extracted by the improved DSDNet network. Finally, the terrain constraint method is used to reduce the false detection problem caused by the terrain factor, and after that the final road extraction result is obtained. To evaluate the effect of road extraction comprehensively, we used multiple data sources (i.e., points, raster and OpenStreetMap data) in different evaluation schemes to verify the accuracy of the road extraction results. The accuracy of our method for the three schemes was 0.8631, 0.8558 and 0.8801, which is higher than other methods have obtained. The results show that our method can effectively solve the interference of shadow and terrain encountered in road extraction over mountainous regions, significantly improving the effect of road extraction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ressub-Net: Residual Subtraction Network For DTM Extraction From DSM;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. A Survey of Deep Learning Road Extraction Algorithms Using High-Resolution Remote Sensing Images;Sensors;2024-03-06

3. Road-MobileSeg: Lightweight and Accurate Road Extraction Model from Remote Sensing Images for Mobile Devices;Sensors;2024-01-15

4. A Multilevel Multimodal Fusion Transformer for Remote Sensing Semantic Segmentation;IEEE Transactions on Geoscience and Remote Sensing;2024

5. Road extraction by using asymmetrical GAN framework and structural similarity loss;Proceedings of the 16th ACM SIGSPATIAL International Workshop on Computational Transportation Science;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3