A Practical Cross-View Image Matching Method between UAV and Satellite for UAV-Based Geo-Localization

Author:

Ding Lirong,Zhou JiORCID,Meng Lingxuan,Long Zhiyong

Abstract

Cross-view image matching has attracted extensive attention due to its huge potential applications, such as localization and navigation. Unmanned aerial vehicle (UAV) technology has been developed rapidly in recent years, and people have more opportunities to obtain and use UAV-view images than ever before. However, the algorithms of cross-view image matching between the UAV view (oblique view) and the satellite view (vertical view) are still in their beginning stage, and the matching accuracy is expected to be further improved when applied in real situations. Within this context, in this study, we proposed a cross-view matching method based on location classification (hereinafter referred to LCM), in which the similarity between UAV and satellite views is considered, and we implemented the method with the newest UAV-based geo-localization dataset (University-1652). LCM is able to solve the imbalance of the input sample number between the satellite images and the UAV images. In the training stage, LCM can simplify the retrieval problem into a classification problem and consider the influence of the feature vector size on the matching accuracy. Compared with one study, LCM shows higher accuracies, and Recall@K (K ∈ {1, 5, 10}) and the average precision (AP) were improved by 5–10%. The expansion of satellite-view images and multiple queries proposed by the LCM are capable of improving the matching accuracy during the experiment. In addition, the influences of different feature sizes on the LCM’s accuracy are determined, and we found that 512 is the optimal feature size. Finally, the LCM model trained based on synthetic UAV-view images was evaluated in real-world situations, and the evaluation result shows that it still has satisfactory matching accuracy. The LCM can realize the bidirectional matching between the UAV-view image and the satellite-view image and can contribute to two applications: (i) UAV-view image localization (i.e., predicting the geographic location of UAV-view images based on satellite-view images with geo-tags) and (ii) UAV navigation (i.e., driving the UAV to the region of interest in the satellite-view image based on the flight record).

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3