A Satellite-Drone Image Cross-View Geolocalization Method Based on Multi-Scale Information and Dual-Channel Attention Mechanism

Author:

Gong Naiqun12,Li Liwei2,Sha Jianjun1,Sun Xu2ORCID,Huang Qian1

Affiliation:

1. Qingdao Innovation and Development Base, Harbin Engineering University, No. 1777 Sansha Road, Qingdao 266000, China

2. Key Laboratory of Computational Optical Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Deng Zhuang South Road, Beijing 100094, China

Abstract

Satellite-Drone Image Cross-View Geolocalization has wide applications. Due to the pronounced variations in the visual features of 3D objects under different angles, Satellite-Drone cross-view image geolocalization remains an unresolved challenge. The key to successful cross-view geolocalization lies in extracting crucial spatial structure information across different scales in the image. Recent studies improve image matching accuracy by introducing an attention mechanism to establish global associations among local features. However, existing methods primarily focus on using single-scale features and employ a single-channel attention mechanism to correlate local convolutional features from different locations. This approach inadequately explores and utilizes multi-scale spatial structure information within the image, particularly lacking in the extraction and utilization of locally valuable information. In this paper, we propose a cross-view image geolocalization method based on multi-scale information and a dual-channel attention mechanism. The multi-scale information includes features extracted from different scales using various convolutional slices, and it extensively utilizes shallow network features. The dual-channel attention mechanism, through successive local and global feature associations, effectively learns depth discriminative features across different scales. Experimental results were conducted using existing satellite and drone image datasets, with additional validation performed on an independent self-made dataset. The findings indicate that our approach exhibits superior performance compared to existing methods. The methodology presented in this paper exhibits enhanced capabilities, especially in the exploitation of multi-scale spatial structure information and the extraction of locally valuable information.

Funder

National Natural Science Foundation of China

Aerospace Innovation and Development Fund Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3