Abstract
This study aimed to establish an automatic sewing process for garment production according to textile properties. An automatic feeding system and a self-made template were introduced to an industrial sewing machine. Two types of stitches were performed on fabrics with various physical properties and surface roughness using this automatic sewing machine. The appearance, stitch length and width, seam strength, and seam efficiency were evaluated according to the sewing conditions, such as presser height and sewing speed. In addition, the correlation between textile properties, sewing conditions, and sewability was analyzed to derive a regression equation for sewability. The evaluation showed no difference in the lock stitch condition. On the other hand, under the zigzag stitch condition, the stitch width differed according to the presser height, which also affected the seam structure. The optimal presser height for each fabric was derived from the experimental results. In terms of the sewing speed, however, the seam strength was the best at 200 RPM in the lock stitch and 400 RPM in the zigzag stitch. The moderating effect of the presser height between textile properties and sewability in the lock stitch condition was confirmed. This result can be used as basic data for establishing an automatic sewing process for smart factories.
Funder
Korea Institue of Industrial Technology
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献