Automatic Identification System (AIS) Data Supported Ship Trajectory Prediction and Analysis via a Deep Learning Model

Author:

Chen XinqiangORCID,Wei Chenxin,Zhou Guiliang,Wu HuafengORCID,Wang Zhongyu,Biancardo Salvatore AntonioORCID

Abstract

Automatic Identification System (AIS) data-supported ship trajectory analysis consistently helps maritime regulations and practitioners make reasonable traffic controlling and management decisions. Significant attentions are paid to obtain an accurate ship trajectory by learning data feature patterns in a feedforward manner. A ship may change her moving status to avoid potential traffic accident in inland waterways, and thus, the ship trajectory variation pattern may differ from previous data samples. The study proposes a novel ship trajectory exploitation and prediction framework with the help of the bidirectional long short-term memory (LSTM) (Bi-LSTM) model, which extracts intrinsic ship trajectory features with feedforward and backward manners. We have evaluated the proposed ship trajectory performance with single and multiple ship scenarios. The indicators of mean absolute error (MAE), mean absolute percentage error (MAPE) and mean square error (MSE) suggest that the proposed Bi-LSTM model can obtained satisfied ship trajectory prediction performance.

Funder

National Key R&D Program of China

the National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Ship Trajectory Prediction;Journal of Marine Science and Engineering;2024-05-01

2. A big data analytics method for the evaluation of maritime traffic safety using automatic identification system data;Ocean & Coastal Management;2024-05

3. The Application of Artificial Intelligence Technology in Shipping: A Bibliometric Review;Journal of Marine Science and Engineering;2024-04-07

4. An Adaptive Multimodal Data Vessel Trajectory Prediction Model Based on a Satellite Automatic Identification System and Environmental Data;Journal of Marine Science and Engineering;2024-03-20

5. A hybrid prediction model of vessel trajectory based on attention mechanism and CNN-GRU;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2024-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3