A hybrid prediction model of vessel trajectory based on attention mechanism and CNN-GRU

Author:

Cen Jian12,Li JiaXi12,Liu Xi12ORCID,Chen JiaHao12,Li HaiSheng12,Huang WeiSheng3,Zeng LinZhe12,Kang JunXi12,Ke Silin12

Affiliation:

1. School of Automation, Guangdong Polytechnic Normal University, Guangzhou, Guangdong, China

2. Guangzhou Intelligent Building Equipment Information Integration and Control Key Laboratory, Guangzhou, Guangdong, China

3. Guangdong Xixun Intelligent Co., Ltd., Guangzhou, Guangdong, China

Abstract

With the increase in global shipping volumes and the complexity of maritime transport systems, vessel trajectory prediction serves an important tool in improving maritime safety. However, most existing vessel trajectory prediction methods focus on a single feature and unable fuse high-dimensional features. To solve these problems, CNN-GRU model with a hybrid attention mechanism (AM) is proposed based on Automatic Identification System (AIS) data. First convolutional neural network (CNN) is proposed to extract the spatio-temporal information of the trajectory data. Then a gated recurrent unit (GRU) is designed to extract the temporal relationship of the trajectories. Finally, AM is introduced to learn the deep-level features and predict the vessel trajectories. To validate the effectiveness of the model, experiments are conducted on three real AIS datasets. In comparison with other models, the method has a high trajectory prediction accuracy.

Funder

Guangzhou Key Laboratory Construction Project

Guangdong Special project in Key Field of Artificial Intelligence for Ordinary University

Guangzhou Science and Technology Key R&D Program

Innovation Team Project of Ordinary University of Guangdong Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3