Efficient Association Rules Hiding Using Genetic Algorithms

Author:

Khuda Bux NaadiyaORCID,Lu Mingming,Wang Jianxin,Hussain Saajid,Aljeroudi Yazan

Abstract

In today’s world, millions of transactions are connected to online businesses, and the main challenging task is ensuring the privacy of sensitive information. Sensitive association rules hiding (SARH) is an important goal of privacy protection algorithms. Various approaches and algorithms have been developed for sensitive association rules hiding, differentiated according to their hiding performance through utility preservation, prevention of ghost rules, and computational complexity. A meta-heuristic algorithm is a good candidate to solve the problem of SARH due to its selective and parallel search behavior, avoiding local minima capability. This paper proposes simple genetic encoding for SARH. The proposed algorithm formulates an objective function that estimates the effect on nonsensitive rules and offers recursive computation to reduce them. Three benchmark datasets were used for evaluation. The results show an improvement of 81% in execution time, 23% in utility, and 5% in accuracy.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3