e-HUNSR: An Efficient Algorithm for Mining High Utility Negative Sequential Rules

Author:

Zhang Mengjiao,Xu Tiantian,Li Zhao,Han Xiqing,Dong Xiangjun

Abstract

As an important technology in computer science, data mining aims to mine hidden, previously unknown, and potentially valuable patterns from databases.High utility negative sequential rule (HUNSR) mining can provide more comprehensive decision-making information than high utility sequential rule (HUSR) mining by taking non-occurring events into account. HUNSR mining is much more difficult than HUSR mining because of two key intrinsic complexities. One is how to define the HUNSR mining problem and the other is how to calculate the antecedent’s local utility value in a HUNSR, a key issue in calculating the utility-confidence of the HUNSR. To address the intrinsic complexities, we propose a comprehensive algorithm called e-HUNSR and the contributions are as follows. (1) We formalize the problem of HUNSR mining by proposing a series of concepts. (2) We propose a novel data structure to store the related information of HUNSR candidate (HUNSRC) and a method to efficiently calculate the local utility value and utility of HUNSRC’s antecedent. (3) We propose an efficient method to generate HUNSRC based on high utility negative sequential pattern (HUNSP) and a pruning strategy to prune meaningless HUNSRC. To the best of our knowledge, e-HUNSR is the first algorithm to efficiently mine HUNSR. The experimental results on two real-life and 12 synthetic datasets show that e-HUNSR is very efficient.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of high utility sequential patterns mining methods;Journal of Intelligent & Fuzzy Systems;2023-11-04

2. Totally-ordered Sequential Rules for Utility Maximization;ACM Transactions on Knowledge Discovery from Data;2023-10-23

3. Mining actionable combined high utility incremental and associated sequential patterns;PLOS ONE;2023-03-29

4. US-Rule: Discovering Utility-driven Sequential Rules;ACM Transactions on Knowledge Discovery from Data;2023-02-20

5. Constraint-based Sequential Rule Mining;2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA);2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3