Mining actionable combined high utility incremental and associated sequential patterns

Author:

Shi Min,Gong Yongshun,Xu TiantianORCID,Zhao Long

Abstract

High utility sequential pattern (HUSP) mining aims to mine actionable patterns with high utilities, widely applied in real-world learning scenarios such as market basket analysis, scenic route planning and click-stream analysis. The existing HUSP mining algorithms mainly attempt to improve computation efficiency while maintaining the algorithm stability in the setting of large-scale data. Although these methods have made some progress, they ignore the relationship between additional items and underlying sequences, which directly leads to the generation of redundant sequential patterns sharing the same underlying sequence. Hence, the mined patterns’ actionability is limited, which significantly compromises the performance of patterns in real-world applications. To address this problem, we present a new method named Combined Utility-Association Sequential Pattern Mining (CUASPM) by incorporating item/sequence relations, which can effectively remove redundant patterns and extract high discriminative and strongly associated sequential pattern combinations with high utilities. Specifically, we introduce the concept of actionable combined mining into HUSP mining for the first time and develop a novel tree structure to select discriminative high utility sequential patterns (HUSPs) for downstream tasks. Furthermore, two efficient strategies (i.e., global and local strategies) are presented to facilitate mining HUSPs while guaranteeing utility growth and high levels of association. Last, two parameters are introduced to evaluate the interestingness of patterns to choose the most useful actionable combined HUSPs (ACHUSPs). Extensive experimental results demonstrate that the proposed CUASPM outperforms the baselines in terms of execution time, memory usage, mining high discriminative and strongly associated HUSPs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Natural Science Foundation of Shandong province

Shandong Excellent Young Scientists Fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

1. Mining High Utility Sequential Patterns Using Multiple Minimum Utility;T Xu;Int J Pattern Recogn,2018

2. Mining high utility patterns in interval-based event sequences;SM Mirbagheri;Data Knowl Eng,2021

3. ProUM: Projection-based utility mining on sequence data;W Gan;Inform Sci,2020

4. Fast Utility Mining on Sequence Data;W Gan;IEEE Trans Cybern,2021

5. TKUS: Mining top-k high utility sequential patterns;C Zhang;Inform Sci,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3