Author:
Artemovych Orest,Balinsky Alexander,Blackmore Denis,Prykarpatski Anatolij
Abstract
The Lie algebraic scheme for constructing Hamiltonian operators is differential-algebraically recast and an effective approach is devised for classifying the underlying algebraic structures of integrable Hamiltonian systems. Lie–Poisson analysis on the adjoint space to toroidal loop Lie algebras is employed to construct new reduced pre-Lie algebraic structures in which the corresponding Hamiltonian operators exist and generate integrable dynamical systems. It is also shown that the Balinsky–Novikov type algebraic structures, obtained as a Hamiltonicity condition, are derivations on the Lie algebras naturally associated with differential toroidal loop algebras. We study nonassociative and noncommutive algebras and the related Lie-algebraic symmetry structures on the multidimensional torus, generating via the Adler–Kostant–Symes scheme multi-component and multi-dimensional Hamiltonian operators. In the case of multidimensional torus, we have constructed a new weak Balinsky–Novikov type algebra, which is instrumental for describing integrable multidimensional and multicomponent heavenly type equations. We have also studied the current algebra symmetry structures, related with a new weakly deformed Balinsky–Novikov type algebra on the axis, which is instrumental for describing integrable multicomponent dynamical systems on functional manifolds. Moreover, using the non-associative and associative left-symmetric pre-Lie algebra theory of Zelmanov, we also explicate Balinsky–Novikov algebras, including their fermionic version and related multiplicative and Lie structures.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference86 articles.
1. The theory of homogeneous convex cones;Vinberg;Transl. Moscow Math. Soc.,1963
2. Affine structures on complex manifolds;Matsushima;Osaka J. Math.,1968
3. The Cohomology Structure of an Associative Ring
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献