Estimating Human Body Dimensions Using RBF Artificial Neural Networks Technology and Its Application in Activewear Pattern Making

Author:

Wang Zhujun,Wang Jianping,Xing Yingmei,Yang Yalan,Liu Kaixuan

Abstract

Nowadays, the popularity of the internet has continuously increased. Predicting human body dimensions intelligently would be beneficial to improve the precision and efficiency of pattern making for enterprises in the apparel industry. In this study, a new predictive model for estimating body dimensions related to garment pattern making is put forward based on radial basis function (RBF) artificial neural networks (ANNs). The model presented in this study was trained and tested using the anthropometric data of 200 adult males between the ages 20 and 48. The detailed body dimensions related to pattern making could be obtained by inputting four easy-to-measure key dimensions into the RBF ANN model. From the simulation results, when spreading parameter σ and momentum factor α were set to 0.012 and 1, the three-layer model with 4, 72, and 8 neurons in the input, hidden, and output layers, respectively, showed maximum accuracy, after being trained by a dataset with 180 samples. Moreover, compared with a classic linear regression model and the back propagation (BP) ANN model according to mean squared error, the predictive performance of the RBF ANN model put forward in this study was better than the other two models. Therefore, it is feasible for the presented predictive model to design garment patterns, especially for tight-fitting garment patterns like activewear. The estimating accuracy of the proposed model would be further improved if trained by more appropriate datasets in the future.

Funder

the key Research Project of Humanities and Social Sciences in Anhui Province College

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3