Developing a Generalized Regression Forecasting Network for the Prediction of Human Body Dimensions

Author:

Bao Chen1,Miao Yongwei2,Chen Jiazhou1,Zhang Xudong3

Affiliation:

1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

2. School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China

3. School of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China

Abstract

With the increasing demand for intelligent custom clothing, the development of highly accurate human body dimension prediction tools using artificial neural network technology has become essential to ensuring high-quality, fashionable, and personalized clothing. Although support vector regression (SVR) networks have demonstrated state-of-the-art (SOTA) performances, they still fall short on prediction accuracy and computation efficiency. We propose a novel generalized regression forecasting network (GRFN) that incorporates kernel ridge regression (KRR) within a multi-strategy multi-subswarm particle swarm optimizer (MMPSO)-SVR nonlinear regression model that applies a residual correction prediction mechanism to enhance prediction accuracy for body dimensions. Importantly, the predictions are generated using only a few basic body size parameters from small-batch samples. The KRR regression model is employed for preliminary residual sequence prediction, and the MMPSO component optimizes the SVR parameters to ensure superior correction of nonlinear relations and noise data, thereby yielding more accurate residual correction value predictions. The GRFN hybrid model is superior to SOTA SVR models and increases the root mean square performance by 91.73–97.12% with a remarkably low mean square error of 0.0054 ± 0.07. This outstanding advancement sets the stage for marketable intelligent apparel design tools for the fast fashion industry.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Zhejiang Province Public Welfare Technology Application Research Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3