Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data

Author:

Zhu YongchaoORCID,Tao Tingye,Yu Kegen,Qu Xiaochuan,Li ShuipingORCID,Wickert Jens,Semmling Maximilian

Abstract

Two effective machine learning-aided sea ice monitoring methods are investigated using 42 months of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data collected by the TechDemoSat-1 (TDS-1). The two-dimensional delay waveforms with different Doppler spread characteristics are applied to extract six features, which are combined to monitor sea ice using the decision tree (DT) and random forest (RF) algorithms. Firstly, the feature sequences are used as input variables and sea ice concentration (SIC) data from the Advanced Microwave Space Radiometer-2 (AMSR-2) are applied as targeted output to train the sea ice monitoring model. Hereafter, the performance of the proposed method is evaluated through comparing with the sea ice edge (SIE) data from the Special Sensor Microwave Imager Sounder (SSMIS) data. The DT- and RF-based methods achieve an overall accuracy of 97.51% and 98.03%, respectively, in the Arctic region and 95.46% and 95.96%, respectively, in the Antarctic region. The DT- and RF-based methods achieve similar accuracies, while the Kappa coefficient of RF-based approach is slightly larger than that of the DT-based approach, which indicates that the RF-based method outperforms the DT-based method. The results show the potential of monitoring sea ice using machine learning-aided GNSS-R approaches.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ocean Remote Sensing Using Spaceborne GNSS-Reflectometry: A Review;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

2. Improving Spaceborne GNSS-R Algal Bloom Detection with Meteorological Data;Remote Sensing;2023-06-15

3. A Spaceborne GNSS-R Sea Ice Detection Method Based on Scene Semantic Objects;IEEE Geoscience and Remote Sensing Letters;2023

4. A Systematic Review of Machine Learning Techniques for GNSS Use Cases;IEEE Transactions on Aerospace and Electronic Systems;2022-12

5. Machine learning-based methods for sea surface rainfall detection from CYGNSS delay-doppler maps;GPS Solutions;2022-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3