Improving Spaceborne GNSS-R Algal Bloom Detection with Meteorological Data

Author:

Zhen Yinqing1,Yan Qingyun12ORCID

Affiliation:

1. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Algal bloom has become a serious environmental problem caused by the overgrowth of plankton in many waterbodies, and effective remote sensing methods for monitoring it are urgently needed. Global navigation satellite system-reflectometry (GNSS-R) has been developed rapidly in recent years, which offers a new perspective on algal bloom detection. When algal bloom emerges, the water surface will turn smoother, which can be detected by GNSS-R. In addition, meteorological parameters, such as temperature, wind speed and solar radiation, are generally regarded as the key factors in the formation of algal bloom. In this article, a new algal bloom detection method aided by machine learning and auxiliary meteorological data is established. This work employs the Cyclone GNSS (CYGNSS) data and the fifth generation European Reanalysis (ERA-5) data with the application of the random under sampling boost (RUSBoost) algorithm. Experiments were carried out for Taihu Lake, China, over the period of August 2018 to May 2022. During the evaluation stage, the test true positive rate (TPR) of 81.9%, true negative rate (TNR) of 82.9%, overall accuracy (OA) of 82.9% and the area under (receiver operating characteristic) curve (AUC) of 0.88 were achieved, with all the GNSS-R observables and meteorological factors being involved. Meanwhile, the contribution of each meteorological factor and the error sources were assessed, and the results indicate that temperature and solar radiation play a prominent role among other meteorological factors in this research. This work demonstrates the capability of CYGNSS as an effective tool for algal bloom detection and the inclusion of meteorological data for further enhanced performance.

Funder

Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People’s Republic of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unlocking the potential of CYGNSS for pan-tropical inland water mapping through multi-source data and transformer;International Journal of Applied Earth Observation and Geoinformation;2024-09

2. Reconstructing NDVI for Lakes: Early Insights Leveraging CYGNSS and ERA-5 Data;2024 Photonics & Electromagnetics Research Symposium (PIERS);2024-04-21

3. Anisotropic Green Tide Patch Information Extraction Based on Deformable Convolution;Remote Sensing;2024-03-27

4. Ocean Remote Sensing Using Spaceborne GNSS-Reflectometry: A Review;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3