Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry

Author:

Zhang BaojunORCID,Wang Zemin,Yang Quanming,Liu Jingbin,An JiachunORCID,Li Fei,Liu Tingting,Geng Hong

Abstract

The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satellite altimetry missions. However, unresolved intermission biases obscure the record. Here, we revise the mathematical model commonly used in the literature to simultaneously correct for intermission bias and ascending–descending bias to ensure the self-consistency and cohesion of the elevation time series across missions. This updated approach is applied to combine Envisat and CryoSat-2 radar altimetry in the period of 2002–2019. We tested this approach by validating it against airborne and satellite laser altimetry. Combining the detailed temporal and spatial evolution of elevation changes with firn densification-modeled volume changes due to surface processes, we found that the Amundsen Sea sector accounts for most of the total volume loss of the Antarctic Ice Sheet (AIS), mainly from ice dynamics. However, surface processes dominate the volume changes in the key regions, such as the Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3