Reconstructing Continuous Ice Sheet Elevation Changes in the Amundsen Sea Sector During 2003–2021 by Merging Envisat, ICESat, CryoSat‐2, and ICESat‐2 Multi‐Altimeter Observations

Author:

Yue Lianzhe12ORCID,Chao Nengfang13ORCID,Chen Gang1,Chen Lihao4,Zhang Baojun5ORCID,Sun Runzhi1,Zhang Yanze1ORCID,Wang Shuai1,Wang Zhengtao2ORCID,Li Fupeng16ORCID,Yu Nan1ORCID,Ouyang Guichong1

Affiliation:

1. College of Marine Science and Technology Key Laboratory of Geological Survey and Evaluation of Ministry of Education China University of Geosciences Wuhan China

2. School of Geodesy and Geomatics Key Laboratory of Geospace Environment and Geodesy Wuhan University Wuhan China

3. Centre for Polar Observation and Modelling School of Earth and Environment University of Leeds Leeds UK

4. School of Land Science and Technology China University of Geosciences Beijing China

5. Chinese Antarctic Center of Surveying and Mapping Wuhan University Wuhan China

6. Institute of Geodesy and Geoinformation University of Bonn Bonn Germany

Abstract

AbstractThe Amundsen Sea (AS) sector in West Antarctica accounts for a significant proportion of Earth's ice losses and is the largest contributor of Antarctica's mass loss. To evaluate its contribution to global sea‐level rise, we reconstruct the long‐term continuous surface elevation changes (CSEC) record of the AS sector by an improved least‐squares plane fitting method (ILSPFM), which merged the relative surface elevation change (SEC) series instead of height from Envisat, ICESat, CryoSat‐2, and ICESat‐2 missions during 2003–2021. The accuracy of CSEC is improved by 25.9% using ILSPFM. The average rate of CSEC in the AS sector was −24.25 ± 0.48 cm yr−1 during 2003–2021. The largest signals of SEC are found over Pine Island, Thwaites, and Pope Glaciers, with the largest decline of SEC over Pope Glacier with a total SEC of −82.44 ± 7.21 m and an annual change rate of −4.34 ± 0.38 m yr−1. The ridge between Pine Island and Thwaites Glaciers is found in the AS sector, indicating that the change of ice sheet is dynamic thinning and closely related to the topography and the distance from the grounding line. Compared with meteorological data sets, we find that the codirectional fluctuation in CSEC is delayed by 3 months with surface temperature, and the precipitation leading SEC series as the phase arrow points straight down from the cross wavelet transform. Our new record shows that the AS sector thinned rapidly from 2003 to 2021 but decelerated from 2019 to 2021, and it was clearly correlated to the surface temperature, precipitation, and local terrain.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3