Solar Irradiation Forecasting Using Ensemble Voting Based on Machine Learning Algorithms

Author:

Solano Edna S.1ORCID,Affonso Carolina M.1ORCID

Affiliation:

1. Faculty of Electrical Engineering, Federal University of Para, Belem 66075-110, PA, Brazil

Abstract

This paper proposes an ensemble voting model for solar radiation forecasting based on machine learning algorithms. Several ensemble models are assessed using a simple average and a weighted average, combining the following algorithms: random forest, extreme gradient boosting, categorical boosting, and adaptive boosting. A clustering algorithm is used to group data according to the weather, and feature selection is applied to choose the most-related inputs and their past observation values. Prediction performance is evaluated by several metrics using a real-world Brazilian database, considering different prediction time horizons of up to 12 h ahead. Numerical results show the weighted average voting approach based on random forest and categorical boosting has superior performance, with an average reduction of 6% for MAE, 3% for RMSE, 16% for MAPE, and 1% for R2 when predicting one hour in advance, outperforming individual machine learning algorithms and other ensemble models.

Funder

PROPESP/UFPA

CNPQ

CAPES Brazil

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3