Ensemble Learning Algorithms for Solar Radiation Prediction in Santo Domingo: Measurements and Evaluation

Author:

Ramírez-Rivera Francisco A.1ORCID,Guerrero-Rodríguez Néstor F.1ORCID

Affiliation:

1. Engineering Sciences, Pontificia Universidad Católica Madre y Maestra (PUCMM), Av. Abraham Lincoln Esq. Romulo Betancourt, Santo Domingo 2748, Dominican Republic

Abstract

Solar radiation is a fundamental parameter for solar photovoltaic (PV) technology. Reliable solar radiation prediction has become valuable for designing solar PV systems, guaranteeing their performance, operational efficiency, safety in operations, grid dispatchment, and financial planning. However, high quality ground-based solar radiation measurements are scarce, especially for very short-term time horizons. Most existing studies trained machine learning (ML) models using datasets with time horizons of 1 h or 1 day, whereas very few studies reported using a dataset with a 1 min time horizon. In this study, a comprehensive evaluation of nine ensemble learning algorithms (ELAs) was performed to estimate solar radiation in Santo Domingo with a 1 min time horizon dataset, collected from a local weather station. The ensemble learning models evaluated included seven homogeneous ensembles: Random Forest (RF), Extra Tree (ET), adaptive gradient boosting (AGB), gradient boosting (GB), extreme gradient boosting (XGB), light gradient boosting (LGBM), histogram-based gradient boosting (HGB); and two heterogeneous ensembles: voting and stacking. RF, ET, GB, and HGB were combined to develop voting and stacking ensembles, with linear regression (LR) being adopted in the second layer of the stacking ensemble. Six technical metrics, including mean squared error (MSE), root mean squared error (RMSE), relative root mean squared error (rRMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2), were used as criteria to determine the prediction quality of the developed ensemble algorithms. A comparison of the results indicates that the HGB algorithm offers superior prediction performance among the homogeneous ensemble learning models, while overall, the stacking ensemble provides the best accuracy, with metric values of MSE = 3218.27, RMSE = 56.73, rRMSE = 12.700, MAE = 29.87, MAPE = 10.60, and R2 = 0.964.

Publisher

MDPI AG

Reference46 articles.

1. UNFCCC, and Conference of the Parties (COP) (December, January 30). Adoption of the Paris Agreement. Proposal by the President. Proceedings of the Paris Climate Change Conference—COP 21, Paris, France.

2. (2024, June 09). COP28 UN Climate Change Conference—United Arab Emirates|UNFCCC. Available online: https://unfccc.int/cop28.

3. IEA (2024). Renewables 2023 Analysis and Forecast to 2028, IEA.

4. Comisión Nacional de Energía (CNE) (2022). Plan Energético Nacional 2022–2036, CNE.

5. Consultoría Jurídica del Poder Ejecutivo (2024, July 27). Ley Núm. 57-07 Sobre Incentivo Al Desarrollo de Fuentes Renovables de Energía y de Sus Regímenes Especiales. Available online: https://biblioteca.enj.org/handle/123456789/79969.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3