Ensemble Learning to Improve the Prediction of Fetal Macrosomia and Large-for-Gestational Age

Author:

Ye ShangyuanORCID,Zhang HuiORCID,Shi Fuyan,Guo Jing,Wang Suzhen,Zhang BoORCID

Abstract

Background: The objective of this study was to investigate the use of ensemble methods to improve the prediction of fetal macrosomia and large for gestational age from prenatal ultrasound imaging measurements. Methods: We evaluated and compared the prediction accuracies of nonlinear and quadratic mixed-effects models coupled with 26 different empirical formulas for estimating fetal weights in predicting large fetuses at birth. The data for the investigation were taken from the Successive Small-for-Gestational-Age-Births study. Ensemble methods, a class of machine learning techniques, were used to improve the prediction accuracies by combining the individual models and empirical formulas. Results: The prediction accuracy of individual statistical models and empirical formulas varied considerably in predicting macrosomia but varied less in predicting large for gestational age. Two ensemble methods, voting and stacking, with model selection, can combine the strengths of individual models and formulas and can improve the prediction accuracy. Conclusions: Ensemble learning can improve the prediction of fetal macrosomia and large for gestational age and have the potential to assist obstetricians in clinical decisions.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3