Deep Learning-Based 500 m Spatio-Temporally Continuous Air Temperature Generation by Fusing Multi-Source Data

Author:

Zhang Xiang,Huang TailaiORCID,Gulakhmadov AminjonORCID,Song Yu,Gu Xihui,Zeng JiangyuanORCID,Huang ShuzheORCID,Nam Won-HoORCID,Chen NengchengORCID,Niyogi DevORCID

Abstract

The all-weather high-resolution air temperature data is crucial for understanding the urban thermal conditions with their spatio-temporal characteristics, driving factors, socio-economic and environmental consequences. In this study, we developed a novel 5-layer Deep Belief Network (DBN) deep learning model to fuse multi-source data and then generated air temperature data with 3H characteristics: High resolution, High spatio-temporal continuity (spatially seamless and temporally continuous), and High accuracy simultaneously. The DBN model was developed and applied for two different urban regions: Wuhan Metropolitan Area (WMA) in China, and Austin, Texas, USA. The model has a excellent ability to fit the complex nonlinear relationship between temperature and different predictive variables. After various adjustments to the model structure and different combinations of input variables, the daily 500-m air temperature in Wuhan Metropolitan Area (WMA) was initially generated by fusing remote sensing, reanalysis and in situ measurement products. The ten-fold cross-validation results indicated that the DBN model achieved promising results with the RMSE of 1.086 °C, MAE of 0.839 °C, and R2 of 0.986. Compared with conventional data fusion algorithms, the DBN model also exhibited better performance. In addition, the detailed evaluation of the model on spatial and temporal scales proved the advantages of using DBN model to generate 3H temperature data. The spatial transferability of the model was tested by conducting a validation experiment for Austin, USA. In general, the results and fine-scale analyses show that the employed framework is effective to generate 3H temperature, which is valuable for urban climate and urban heat island research.

Funder

Hubei Provincial Department of Science and Technology

State Key Laboratory of Remote Sensing Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3