Using Electrical Resistivity Tomography to Monitor the Evolution of Landslides’ Safety Factors under Rainfall: A Feasibility Study Based on Numerical Simulation

Author:

Bai DongxinORCID,Lu GuangyinORCID,Zhu Ziqiang,Zhu Xudong,Tao Chuanyi,Fang Ji

Abstract

Although electrical resistivity tomography (ERT) may gather the internal resistivity information from a landslide area in a large-scale, low-cost, and non-invasive manner compared to point-based sensor monitoring technology, the indirect resistivity information obtained cannot directly evaluate the landslide’s current mechanical status, such as stress, strength, etc. Based on ERT monitoring data, a framework for quantitatively and directly evaluating the evolution of the factor of safety (FOS) of landslides during rainfall is proposed. The framework first inverts ERT observation data using the inexact Gauss–Newton method based on multiple constraints to obtain a more realistic resistivity distribution, then calculates the saturation distribution using Archie’s equation, and finally calculates the FOS of landslides using the finite element strength reduction method. Twelve sets of numerical experiments were designed and carried out based on the synthetic data of a theoretical model. The experimental results show that the proposed framework is valid and reliable under various arrays, apparent resistivity noise, and uncertainty in the water-electric correlation curve, with the Dipole-Dipole array outperforming the others in terms of accuracy, sensitivity, and anti-noise capability. The proposed framework is significant in improving ERT monitoring and early warning capabilities for rainfall-induced landslides.

Funder

National Natural Science Foundation of China

Key research and development program of Hunan Province of China

Natural Resources Research Project in Hunan Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3