Abstract
The data collection in the automated monitoring of landslides is often characterized by large amounts of data, periodic fluctuations, many outliers, and different collection intervals. The traditional method of calculating velocity and acceleration using the differential algorithm for landslide acceleration relies on experience to select thresholds and produces a large number of false early warnings. A hybrid early warning method for the landslide acceleration process based on automated monitoring data is proposed to solve this problem. The method combines the conventional warning method, based on cumulative displacement, velocity, and acceleration, and the critical sliding warning method based on normalized tangent angle according to different strategies. On the one hand, the least-squares fitting of monitoring data inside a given time window is used to calculate various early warning parameters, improving data usage and lowering calculation error. On the other hand, a dynamic semi-quantitative and semi-empirical method is provided for the determination of the thresholds, which is more reliable than the purely empirical method. The validation experiments at the Lishanyuan landslide in southern China show that the hybrid method can accurately identify the accelerating deformation of the landslide and gives very few false warnings. The proposed method is practical and effective for systems that require automated monitoring and warnings for a large number of landslides.
Funder
National Natural Science Foundation of China
Key research and development program of Hunan Province of China
Natural Resources Research Project in Hunan Province of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献