Ensemble Machine Learning of Random Forest, AdaBoost and XGBoost for Vertical Total Electron Content Forecasting

Author:

Natras RandaORCID,Soja BenediktORCID,Schmidt Michael

Abstract

Space weather describes varying conditions between the Sun and Earth that can degrade Global Navigation Satellite Systems (GNSS) operations. Thus, these effects should be precisely and timely corrected for accurate and reliable GNSS applications. That can be modeled with the Vertical Total Electron Content (VTEC) in the Earth’s ionosphere. This study investigates different learning algorithms to approximate nonlinear space weather processes and forecast VTEC for 1 h and 24 h in the future for low-, mid- and high-latitude ionospheric grid points along the same longitude. VTEC models are developed using learning algorithms of Decision Tree and ensemble learning of Random Forest, Adaptive Boosting (AdaBoost), and eXtreme Gradient Boosting (XGBoost). Furthermore, ensemble models are combined into a single meta-model Voting Regressor. Models were trained, optimized, and validated with the time series cross-validation technique. Moreover, the relative importance of input variables to the VTEC forecast is estimated. The results show that the developed models perform well in both quiet and storm conditions, where multi-tree ensemble learning outperforms the single Decision Tree. In particular, the meta-estimator Voting Regressor provides mostly the lowest RMSE and the highest correlation coefficients as it averages predictions from different well-performing models. Furthermore, expanding the input dataset with time derivatives, moving averages, and daily differences, as well as modifying data, such as differencing, enhances the learning of space weather features, especially over a longer forecast horizon.

Funder

German Academic Exchange Service

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3