Low Sidelobe Series-Fed Patch Planar Array with AMC Structure to Suppress Parasitic Radiation

Author:

Tan QingquanORCID,Fan KuikuiORCID,Yang Wenwen,Luo Guoqing

Abstract

For automobile radar systems, the antenna array requires a low sidelobe level (SLL) to reduce interference. A low-SLL and low-cost planar antenna array are proposed in this article for millimeter-wave automotive radar applications. The proposed array consists of six linear series-fed patch arrays, a series distribution network using a grounded co-planar waveguide (GCPW), and a bed of nails. First, a hybrid HFSS-MATLAB optimization platform is set up to easily obtain good impedance matching and low SLL of the linear series-fed patch array. Then, a six-way GCPW power divider is designed to combine the optimized linear sub-array to achieve a planar array. However, since CCPW is a semi-open structure, like a microstrip line, the parasitic radiation generated by the GCPW feeding network will lead to the deterioration of the SLL. To solve this problem, a bed of nails—as an artificial magnetic conductor (AMC)—is designed and placed above the feeding networking to create an electromagnetic stopband in the working band. Its working mechanism has been explained in detail. The feeding network cannot effectively radiate electromagnetic waves into free space. Thus, the parasitic radiation can be suppressed. A low-SLL planar array prototype working at 79 GHz is designed, manufactured, and measured. The measured results confirm that the proposed low-SLL planar array has a −10 dB impedance bandwidth of 3 GHz from 77 to 80 GHz and a maximum peak gain of 21 dBi. The measured SLL is −24 dB and −23 dB in the E-plane and H-plane at 79 GHz, respectively. The proposed low SLL array can be used for adaptive cruise control (ACC) system applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3