A Wideband Microstrip-to-Waveguide Transition Using E-Plane Probe with Parasitic Patch for W-Band Application

Author:

Han Min,Wang ChengzhiORCID,Liu Chao,Xiao Shuwen,Ma Jianguang,Sun Hui

Abstract

The hollow metal waveguides are attractive components for millimeter-wave circuits owing to low loss. To integrate with the front-end circuit, a transition from microstrip line to waveguide is required. In this article, a microstrip-to-waveguide transition is presented in the W-band by using an E-plane probe with a parasitic patch. The probe is embedded into the waveguide along the center of the broad wall to excite the TE10 mode. A backshort-circuited waveguide with a quarter wavelength is used to obtain sufficient energy coupling and achieve good impedance matching. The additional parasitic patch can introduce a new resonance at a low frequency to enhance the working bandwidth. Hence, the proposed transition achieves wide working bandwidth and low insertion loss. For verification, a back-to-back transition is constructed and measured. The measured results indicate that the proposed transition has a wide working bandwidth covering the entire W-band. The measured reflection coefficient is below −13 dB from 70 to 110 GHz and the average insert loss is 1.1 dB. Attributed to wide working bandwidth and simple structure, the proposed transition is attractive for W-band circuit systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

1. Multibeam Antenna Technologies for 5G Wireless Communications;Hong;IEEE Trans. Antennas Propag.,2017

2. A 77–81-GHz 16-Element Phased-Array Receiver With ± 50° Beam Scanning for Advanced Automotive Radars;Ku;IEEE Trans. Antennas Propag.,2014

3. Tan, Q., Fan, K., Yang, W., and Luo, G. (2022). Low Sidelobe Series-Fed Patch Planar Array with AMC Structure to Suppress Parasitic Radiation. Remote Sens., 14.

4. A Wideband High-Gain Planar Integrated Antenna Array for E-Band Backhaul Applications;Fan;IEEE Trans. Antennas Propag.,2020

5. An LTCC Microstrip Grid Array Antenna for 94-GHz Applications;Chen;IEEE Antennas Wirel. Propag. Lett.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3