Evaluation of 10-Year NOAA/NASA Suomi NPP and NOAA-20 VIIRS Reflective Solar Band (RSB) Sensor Data Records (SDR) over Deep Convective Clouds

Author:

Wang WenhuiORCID,Cao ChangyongORCID,Shao Xi,Blonski SlawomirORCID,Choi Taeyoung,Uprety Sirish,Zhang BinORCID,Bai Yan

Abstract

The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key instrument onboard the Suomi NPP (S-NPP) and the NOAA-20 satellites that provides state-of-the-art Earth observations for ocean, land, aerosol, and cloud applications. VIIRS Reflective Solar Band (RSB) Sensor Data Records (SDR, or Level 1b products) are calibrated and produced independently by The National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) VIIRS science teams. Multiple versions of S-NPP and NOAA-20 VIIRS SDRs are available to date. This study evaluates the long-term calibration stability, biases, and inter-channel consistency of S-NPP and NOAA-20 VIIRS SDRs generated by NOAA and NASA over Deep Convective Clouds (DCC) to support downstream applications, especially climate data record studies. Five VIIRS RSB SDRs were analyzed in this study: (1) NOAA version 2 S-NPP VIIRS reprocessed SDRs (NOAA-NPP-V2, 2012–2020), (2) NASA Collection 1 S-NPP VIIRS SDRs (NASA-NPP-C1, 2012–2021), (3) NASA Collection 2 S-NPP VIIRS SDRs (NASA-NPP-C2, 2012–2021), (4) NOAA constant F-factor calibrated NOAA-20 VIIRS SDRs (NOAA-N20-ConstF, 2018–2021), and (5) NASA Collection 2 NOAA-20 VIIRS SDRs (NASA-N20-C2, 2018–2021). The DCC time series analysis results indicate that the calibrations of the three S-NPP VIIRS RSB SDRs are generally stable, with trends within ±0.1%/year for all RSBs, except for M3–M4 (all three S-NPP SDRs) and I3 (NASA-NPP-C1 only). The calibration of NASA-NPP-C2 SDRs is more uniform at individual detector levels. NOAA-NPP-V2 and NASA-NPP-C1 SDRs exhibit non-negligible time-dependent detector level degradation in M1–M4 (up to 1.5% in 2020–2021), causing striping in the SDR imagery. The biases between NOAA and NASA S-NPP VIIRS RSB SDRs are from 0.1% to 2.4%. The calibrations of the two NOAA-20 VIIRS RSB SDRs are also generally stable, with trends within ±0.16%/year. Small downward trends were observed in the visible and near-infrared (VIS/NIR) bands, and small upward trends were observed in the shortwave infrared (SWIR) bands for both NOAA and NASA NOAA-20 SDRs. The biases between NOAA and NASA NOAA-20 VIIRS RSB SDRs are nearly constant over time and within ±0.2% for VIS/NIR bands and ±0.7% for SWIR bands. There exists large inter-satellite biases between S-NPP and NOAA-20 VIIRS SDRs, especially in the VIS/NIR bands (up to 4.5% for NOAA SDRs and up to 7% for NASA SDRs). In addition, the DCC reflectance of S-NPP VIIRS RSB spectral bands is more consistent with that of the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) than that of NOAA-20. Bands M4 and M9 seem out of family in all five S-NPP and NOAA-20 RSB SDRs evaluated.

Funder

NOAA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time Series Forecasting Techniques for Climate Trend Prediction;Advances in Environmental Engineering and Green Technologies;2024-06-07

2. NOAA-20 VIIRS On-Orbit Reflective Solar Band Radiometric Calibration Five-Year Update;IEEE Transactions on Geoscience and Remote Sensing;2024

3. 基于深对流云的FY-3D/MERSI-II反射太阳波段辐射响应评估;Acta Optica Sinica;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3