Time Series Forecasting Techniques for Climate Trend Prediction

Author:

Zakari Rufai Yusuf1ORCID,Lawal Zaharaddeen Karami2,Kalinaki Kassim3ORCID,Maiwada Umar Danjuma4ORCID

Affiliation:

1. Skyline University, Nigeria

2. Universiti Brunei Darassalam, Brunei

3. Islamic University in Uganda, Uganda

4. Umaru Musa Yaradua University, Katsina, Nigeria

Abstract

Climate change is a pressing global issue that profoundly impacts ecosystems, economies, and societies. Accurate climate trend prediction is crucial for informed decision-making and mitigation strategies. This study focuses on time series forecasting techniques as vital tools in predicting climate trends. It explores the complexities of climate time series data and the challenges associated with the data. The study explores traditional methods like Autoregressive Integrated Moving Average (ARIMA), highlighting their applicability and limitations. It also showcases the power of machine learning and statistical techniques in addressing climate data intricacies through real-world examples. In the era of technology, deep learning (DL) approaches, including recurrent neural networks, Long short-term memory (LSTM), Gated Recurrent Unit (GRU), and transformer-based models, are emerging for climate change forecasting. The study looks ahead to ongoing research and trends in climate time series forecasting, outlining challenges and promising areas for exploration.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3