Abstract
Space-time adaptive processing (STAP) encounters severe performance degradation with insufficient training samples in inhomogeneous environments. Sparse Bayesian learning (SBL) algorithms have attracted extensive attention because of their robust and self-regularizing nature. In this study, a computationally efficient SBL STAP algorithm with adaptive Laplace prior is developed. Firstly, a hierarchical Bayesian model with adaptive Laplace prior for complex-value space-time snapshots (CALM-SBL) is formulated. Laplace prior enforces the sparsity more heavily than Gaussian, which achieves a better reconstruction of the clutter plus noise covariance matrix (CNCM). However, similar to other SBL-based algorithms, a large degree of freedom will bring a heavy burden to the real-time processing system. To overcome this drawback, an efficient localized reduced-dimension sparse recovery-based space-time adaptive processing (LRDSR-STAP) framework is proposed in this paper. By using a set of deeply weighted Doppler filters and exploiting prior knowledge of the clutter ridge, a novel localized reduced-dimension dictionary is constructed, and the computational load can be considerably reduced. Numerical experiments validate that the proposed method achieves better performance with significantly reduced computational complexity in limited snapshots scenarios. It can be found that the proposed LRDSR-CALM-STAP algorithm has the potential to be implemented in practical real-time processing systems.
Funder
National Key R&D Program of China
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献