A novel sparse recovery‐based space‐time adaptive processing algorithm based on gridless sparse Bayesian learning for non‐sidelooking airborne radar

Author:

Cui Weichen1ORCID,Wang Tong1,Wang Degen1ORCID,Zhang Xinying1

Affiliation:

1. National Key Laboratory of Radar Signal Processing Xidian University Xi'an China

Abstract

AbstractNon‐sidelooking airborne radar encounters significant non‐stationary and heterogeneous clutter environments, resulting in a severe shortage of samples. Sparse recovery‐based space‐time adaptive processing (SR‐STAP) methods can achieve good clutter suppression performance with limited samples. Nonetheless, grid‐based SR‐STAP algorithms encounter off‐grid effects in non‐sidelooking arrays, which can severely degrade the clutter suppression performance. In this study, the authors propose a novel gridless SR‐STAP method in the continuous spatial‐temporal domain to address the issue of off‐grid effects. Inspired by the fact that sparse Bayesian learning (SBL) framework implicitly performs a structured covariance matrix estimation, the authors reparameterise its cost function to directly estimate the block‐Toeplitz structured matrix from the measurements in a gridless manner. Since the proposed cost function is non‐convex, we utilise a majorisation‐minimisation‐based iterative procedure to estimate the clutter covariance matrix. Finally, using the standard concept of semidefinite programming, the authors derive a convex gridless implementation of the SBL cost function for uniformly sampled radar systems. Extensive simulation experiments demonstrate the exceptional clutter suppression and target detection performance of the proposed algorithm.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3