Abstract
Due to differences in synthetic aperture radar (SAR) and optical imaging modes, there is a considerable degree of nonlinear intensity difference (NID) and geometric difference between the two images. The SAR image is also accompanied by strong multiplicative speckle noise. These phenomena lead to what is known as a challenging task to register optical and SAR images. With the development of remote sensing technology, both optical and SAR images equipped with sensor positioning parameters can be roughly registered according to geographic coordinates in advance. However, due to the inaccuracy of sensor parameters, the relative positioning accuracy is still as high as tens or even hundreds of pixels. This paper proposes a fast co-registration method including 3D dense feature description based on a single-scale Sobel and the ratio of exponentially weighted averages (ROEWA) combined with the angle-weighted gradient (SRAWG), overlapping template merging, and non-maxima suppressed template search. In order to more accurately describe the structural features of the image, the single-scale Sobel and ROEWA operators are used to calculate the gradients of optical and SAR images, respectively. On this basis, the 3 × 3 neighborhood angle-weighted gradients of each pixel are fused to form a pixel-wise 3D dense feature description. Aiming at the repeated feature description in the overlapping template and the multi-peak problem on the search surface, this paper adopts the template search strategy of overlapping template merging and non-maximum suppression. The registration results obtained on seven pairs of test images show that the proposed method has significant advantages over state-of-the-art methods in terms of comprehensive registration accuracy and efficiency.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献