Structure similarity virtual map generation network for optical and SAR image matching

Author:

Chen Shiwei,Mei Liye

Abstract

Introduction: Optical and SAR image matching is one of the fields within multi-sensor imaging and fusion. It is crucial for various applications such as disaster response, environmental monitoring, and urban planning, as it enables comprehensive and accurate analysis by combining the visual information of optical images with the penetrating capability of SAR images. However, the differences in imaging mechanisms between optical and SAR images result in significant nonlinear radiation distortion. Especially for SAR images, which are affected by speckle noises, resulting in low resolution and blurry edge structures, making optical and SAR image matching difficult and challenging. The key to successful matching lies in reducing modal differences and extracting similarity information from the images.Method: In light of this, we propose a structure similarity virtual map generation network (SVGNet) to address the task of optical and SAR image matching. The core innovation of this paper is that we take inspiration from the concept of image generation, to handle the predicament of image matching between different modalities. Firstly, we introduce the Attention U-Net as a generator to decouple and characterize optical images. And then, SAR images are consistently converted into optical images with similar textures and structures. At the same time, using the structural similarity (SSIM) to constrain structural spatial information to improve the quality of generated images. Secondly, a conditional generative adversarial network is employed to further guide the image generation process. By combining synthesized SAR images and their corresponding optical images in a dual channel, we can enhance prior information. This combined data is then fed into the discriminator to determine whether the images are true or false, guiding the generator to optimize feature learning. Finally, we employ least squares loss (LSGAN) to stabilize the training of the generative adversarial network.Results and Discussion: Experiments have demonstrated that the SVGNet proposed in this paper is capable of effectively reducing modal differences, and it increases the matching success rate. Compared to direct image matching, using image generation ideas results in a matching accuracy improvement of more than twice.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3