Stand Structural Characteristics Derived from Combined TLS and Landsat Data Support Predictions of Mushroom Yields in Mediterranean Forest

Author:

Martínez-Rodrigo RaquelORCID,Gómez CristinaORCID,Toraño-Caicoya AstorORCID,Bohnhorst Luke,Uhl EnnoORCID,Águeda Beatriz

Abstract

Forest fungi provide recreational and economic services, as well as ecosystem biodiversity. Wild mushroom yields are difficult to estimate; climatic conditions are known to trigger temporally localised yields, and forest structure also affects productivity. In this work, we analyse the capacity of remotely sensed variables to estimate wild mushroom biomass production in Mediterranean Pinus pinaster forests in Soria (Spain) using generalised additive mixed models (GAMMs). In addition to climate variables, multitemporal NDVI derived from Landsat data, as well as structural variables measured with mobile Terrestrial Laser Scanner (TLS), are considered. Models are built for all mushroom species as a single pool and for Lactarius deliciosus individually. Our results show that, in addition to autumn precipitation, the interaction of multitemporal NDVI and vegetation biomass are most explanatory of mushroom productivity in the models. When analysing the productivity models of Lactarius deliciosus, in addition to the interaction between canopy cover and autumn minimum temperature, basal area (BA) becomes relevant, indicating an optimal BA range for the development of this species. These findings contribute to the improvement of knowledge about wild mushroom productivity, helping to meet Goal 15 of the 2030 UN Agenda.

Funder

Spanish Ministry of Science and Innovation

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3