Evaluation of Handheld Mobile Laser Scanner Systems for the Definition of Fuel Types in Structurally Complex Mediterranean Forest Stands

Author:

Hoffrén Raúl12ORCID,Lamelas María Teresa23ORCID,de la Riva Juan12ORCID

Affiliation:

1. Department of Geography and Land Management, University of Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain

2. Geoforest Group, University Institute for Research in Environmental Sciences of Aragón (IUCA), University of Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain

3. Centro Universitario de la Defensa, Academia General Militar, Ctra. Huesca s/n, 50090 Zaragoza, Spain

Abstract

The exposure of Mediterranean forests to large wildfires requires mechanisms to prevent and mitigate their negative effects on the territory and ecosystems. Fuel models synthesize the complexity and heterogeneity of forest fuels and allow for the understanding and modeling of fire behavior. However, it is sometimes challenging to define the fuel type in a structurally heterogeneous forest stand due to the mixture of characteristics from the different types and limitations of qualitative field observations and passive and active airborne remote sensing. This can impact the performance of classification models that rely on the in situ identification of fuel types as the ground truth, which can lead to a mistaken prediction of fuel types over larger areas in fire prediction models. In this study, a handheld mobile laser scanner (HMLS) system was used to assess its capability to define Prometheus fuel types in 43 forest plots in Aragón (NE Spain). The HMLS system captured the vertical and horizontal distribution of fuel at an extremely high resolution to derive high-density three-dimensional point clouds (average: 63,148 points/m2), which were discretized into voxels of 0.05 m3. The total number of voxels in each 5 cm height stratum was calculated to quantify the fuel volume in each stratum, providing the vertical distribution of fuels (m3/m2) for each plot at a centimetric scale. Additionally, the fuel volume was computed for each Prometheus height stratum (0.60, 2, and 4 m) in each plot. The Prometheus fuel types were satisfactorily identified in each plot and were compared with the fuel types estimated in the field. This led to the modification of the ground truth in 10 out of the 43 plots, resulting in errors being found in the field estimation between types FT2–FT3, FT5–FT6, and FT6–FT7. These results demonstrate the ability of the HMLS systems to capture fuel heterogeneity at centimetric scales for the definition of fuel types in the field in Mediterranean forests, making them powerful tools for fuel mapping, fire modeling, and ultimately for improving wildfire prevention and forest management.

Funder

Spanish Ministry of Science, Innovation, and Universities

Government of Aragón

University Institute for Research in Environmental Sciences of Aragón (IUCA) of the University of Zaragoza

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3