Affiliation:
1. Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
Abstract
Personal laser scanning devices employing Simultaneous Localization and Mapping (SLAM) technology have rightfully gained traction in various applications, including forest mensuration and inventories. This study focuses the inherent stochastic noise in SLAM data. An analysis of noise distribution is performed in GeoSLAM ZEB Horizon for point clouds of trees of two species, Norway spruce and European beech, to mitigate bias in diameter estimates. The method involved evaluating residuals of individual 3D points concerning the real tree surface model based on TLS data. The results show that the noise is not symmetrical regarding the real surface, showing significant negative difference, and moreover, the difference from zero mean significantly differs between species, with an average of −0.40 cm for spruce and −0.44 cm for beech. Furthermore, the residuals show significant dependence on the return distance between the scanner and the target and the incidence angle. An experimental comparison of RANSAC circle fitting outcomes under various configurations showed unbiased diameter estimates with extending the inlier tolerance to 5 cm with 2.5 cm asymmetry. By showing the nonvalidity of the assumption of zero mean in diameter estimation methods, the results contribute to fill a gap in the methodology of data processing with the widely utilized instrument.
Funder
Technological Agency of the Czech Republic
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献