Author:
Wang Yang,Yang Shufeng,Wang Feng,Li Jingshe
Abstract
To reduce slag entrapment in 150 × 1270 mm slab continuous casting molds at the Tang Steel Company, the effect of submerged entrance nozzle (SEN) depth and casting speed on the phenomenon was studied by computational fluid dynamics simulations. Then, the slag entrapment behavior in continuous casting molds, utilizing Large Eddy Simulation (LES) by coupling the volume of fluid (VOF) method, was also used. Finally, the effect of several common oils usually used to simulate slag in water modelling on slag entrapment was discussed and the water modelling results were used to validate the numerical simulation findings. The results showed that the optimum scheme is a submerged depth of SEN 90 mm and a casting speed of 1.6 m/min. Under optimal conditions, the maximum surface velocity is smallest (0.335 m/s) and the maximum slag entrapment ratio (0.44%) appears in the position of 0.1 m below the meniscus after 15 s. The water modelling results were in good agreement with the numerical simulation results.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献