Abstract
In this paper, we present our optimization tool for fluorophore-conjugated metal nanostructures for the purpose of designing novel contrast agents for multimodal bioimaging. Contrast agents are of great importance to biological imaging. They usually include nanoelements causing a reduction in the need for harmful materials and improvement in the quality of the captured images. Thus, smart design tools that are based on evolutionary algorithms and machine learning definitely provide a technological leap in the fluorescence bioimaging world. This article proposes the usage of properly designed metallic structures that change their fluorescence properties when the dye molecules and the plasmonic nanoparticles interact. The nanostructures design and evaluation processes are based upon genetic algorithms, and they result in an optimal separation distance, orientation angles, and aspect ratio of the metal nanostructure.
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献