Reduction in Irradiation Dose in Aperture Coded Enhanced Computed Tomography Imager Using Super-Resolution Techniques

Author:

Danan Yossef,Avraham Doron,Zalevsky Zeev

Abstract

One of the main concerns regarding medical imaging is the danger tissue’s ionizing due to the applied radiation. Many medical procedures are based on this ionizing radiation (such as X-rays and Gamma radiation). This radiation allows the physician to perform diagnosis inside the human body. Still, the main concern is stochastic effects to the DNA, particularly the cause of cancer. The radiation dose endangers not only the patient but also the medical staff, who might be close to the patient and be exposed to this dangerous radiation in a daily manner. This paper presents a novel concept of radiation reduced Computed Tomography (CT) scans. The proposed concept includes two main methods: minification to enhance the energy concertation per pixel and subpixel resolution enhancement, using shifted images, to preserve resolution. The proposed process uses several pinhole masks as the base of the imaging modality. The proposed concept was validated numerically and experimentally and has demonstrated the capability of reducing the radiation efficiency by factor 4, being highly significant to the world of radiology and CT scans. This dose reduction allows a safer imaging process for the patient and the medical staff. This method simplifies the system and improves the obtained image quality. The proposed method can contribute additively to standard existing dose reduction or super-resolution techniques to achieve even better performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3