Intercalibration of ASCAT Scatterometer Winds from MetOp-A, -B, and -C, for a Stable Climate Data Record

Author:

Ricciardulli Lucrezia,Manaster Andrew

Abstract

Scatterometers provide very stable ocean vector wind data records. This is because they measure the ratio of backscattered to incident microwave signal over the ocean surface as opposed to an absolute quantity (e.g., emitted microwave signal). They provide an optimal source of observations for building a long ocean vector wind Climate Data Record (CDR). With this objective in mind, observations from different satellite platforms need to be assessed for high absolute accuracy versus a common ground truth and for fine cross-calibration during overlapping periods. Here we describe the methodology for developing a CDR of ocean surface winds from the C-band ASCAT scatterometers onboard MetOp-A, -B, and -C. This methodology is based on the following principles: a common Geophysical Model Function (GMF) and wind algorithm developed at Remote Sensing Systems (RSS) and the use of in situ and satellite winds to cross-calibrate the three scatterometers within the accuracy required for CDRs, about 0.1 m/s at the global monthly scale. Using multiple scatterometers and radiometers for comparison allows for the opportunity to isolate sensors that are drifting or experiencing step-changes as small as 0.05 m/s. We detected and corrected a couple of such changes in the ASCAT-A wind record. The ASCAT winds are now very stable over time and well cross-calibrated with each other. The full C-band wind CDR now covers 2007-present and can be easily extended in the next decade with the launch of the MetOp Second Generation scatterometers.

Funder

NASA Headquarters

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference83 articles.

1. Systematic Observation Requirements for Satellite-Based Data Products for Climate,2011

2. Robust Responses of the Hydrological Cycle to Global Warming

3. How Much More Rain Will Global Warming Bring?

4. Evaluating and Extending the Ocean Wind Climate Data Record

5. Improvements to the Vector Wind Climate Record Using RapidScat as a Common Reference and Aquarius/SMAP for High. Winds in Rain;Wentz,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3