Sea Surface Wind Speed Estimation From the Combination of Satellite Scatterometer and Radiometer Parameters

Author:

Xiang Kunsheng12ORCID,Zhou Wu3,Bao Qingliu12

Affiliation:

1. PIESAT Information Technology Company, Ltd. Beijing China

2. PIESAT Space and Remote Sensing Technology (Shanghai) Company Limited Beijing China

3. Key Laboratory of Space Ocean Remote Sensing and Application/National Satellite Ocean Application Service Ministry of Natural Resources Beijing China

Abstract

AbstractSatellite research on global sea surface winds is crucial for understanding and monitoring the dynamics of earth's oceans, providing valuable insights into weather patterns, climate changes, and oceanographic processes. This study investigates the fusion of active (microwave scatterometer) and passive (microwave radiometer) satellite data using Machine learning (ML) for sea surface wind speed estimation. Employing Random Forest Regression (RF), Convolutional Neural Network Regression (CNN), and Multiple Linear Regression (MLR). Evaluation against reference data sets (Advanced Scatterometer, ERA5, Cross‐Calibrated Multi‐Platform (CCMP), buoy wind speeds) highlights the robustness of the proposed models. The research findings indicate that both RF and CNN exhibit superior accuracy in the active, passive, and joint active‐passive models compared to the simplistic MLR model. The joint models of the three regression methods outperform the individual active or passive models. The root mean square deviation (RMSD) accuracy of RF and CNN joint models, when compared with ASCAT, is in the order of 0.7 m/s, and when compared with buoys, the RMSD accuracy is around 1.1 m/s. The ML models, especially RF and CNN, demonstrate superior performance, providing accurate and reliable estimations crucial for meteorological and oceanographic applications. These findings underscore the potential operational use of ML techniques in enhancing remote sensing applications.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3