Light-Weight Cloud Detection Network for Optical Remote Sensing Images with Attention-Based DeeplabV3+ Architecture

Author:

Yao XudongORCID,Guo QingORCID,Li An

Abstract

Clouds in optical remote sensing images cause spectral information change or loss, that affects image analysis and application. Therefore, cloud detection is of great significance. However, there are some shortcomings in current methods, such as the insufficient extendibility due to using the information of multiple bands, the intense extendibility due to relying on some manually determined thresholds, and the limited accuracy, especially for thin clouds or complex scenes caused by low-level manual features. Combining the above shortcomings and the requirements for efficiency in practical applications, we propose a light-weight deep learning cloud detection network based on DeeplabV3+ architecture and channel attention module (CD-AttDLV3+), only using the most common red–green–blue and near-infrared bands. In the CD-AttDLV3+ architecture, an optimized backbone network-MobileNetV2 is used to reduce the number of parameters and calculations. Atrous spatial pyramid pooling effectively reduces the information loss caused by multiple down-samplings while extracting multi-scale features. CD-AttDLV3+ concatenates more low-level features than DeeplabV3+ to improve the cloud boundary quality. The channel attention module is introduced to strengthen the learning of important channels and improve the training efficiency. Moreover, the loss function is improved to alleviate the imbalance of samples. For the Landsat-8 Biome set, CD-AttDLV3+ achieves the highest accuracy in comparison with other methods, including Fmask, SVM, and SegNet, especially for distinguishing clouds from bright surfaces and detecting light-transmitting thin clouds. It can also perform well on other Landsat-8 and Sentinel-2 images. Experimental results indicate that CD-AttDLV3+ is robust, with a high accuracy and extendibility.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3