A Framework for Actual Evapotranspiration Assessment and Projection Based on Meteorological, Vegetation and Hydrological Remote Sensing Products

Author:

Liu YuanORCID,Yue Qimeng,Wang Qianyang,Yu Jingshan,Zheng Yuexin,Yao XiaoleiORCID,Xu Shugao

Abstract

As the most direct indicator of drought, the dynamic assessment and prediction of actual evapotranspiration (AET) is crucial to regional water resources management. This research aims to develop a framework for the regional AET evaluation and prediction based on multiple machine learning methods and multi-source remote sensing data, which combines Boruta algorithm, Random Forest (RF), and Support Vector Regression (SVR) models, employing datasets from CRU, GLDAS, MODIS, GRACE (-FO), and CMIP6, covering meteorological, vegetation, and hydrological variables. To verify the framework, it is applied to grids of South America (SA) as a case. The results meticulously demonstrate the tendency of AET and identify the decisive role of T, P, and NDVI on AET in SA. Regarding the projection, RF has better performance in different input strategies in SA. According to the accuracy of RF and SVR on the pixel scale, the AET prediction dataset is generated by integrating the optimal results of the two models. By using multiple parameter inputs and two models to jointly obtain the optimal output, the results become more reasonable and accurate. The framework can systematically and comprehensively evaluate and forecast AET; although prediction products generated in SA cannot calibrate relevant parameters, it provides a quite valuable reference for regional drought warning and water allocating.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3