Are raw satellite bands and machine learning all you need to retrieve actual evapotranspiration?

Author:

El Hachimi Chouaib,Khabba Said,Belaqziz Salwa,Ayi Hssaine Bouchra,Kharrou Mohamed Hakim,Chehbouni Abdelghani

Abstract

Accurately estimating latent heat flux (LE) is crucial for achieving efficiency in irrigation. It is a fundamental component in determining the actual evapotranspiration (ETa), which in turn, quantifies the amount of water lost that needs to be adequately compensated through irrigation. Empirical and physics-based models have extensive input data and site-specific limitations when estimating the LE. In contrast, the emergence of data-driven techniques combined with remote sensing has shown promising results for LE estimation with minimal and easy-to-obtain input data. This paper evaluates two machine learning-based approaches for estimating the LE. The first uses climate data, the Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature (LST), while the second uses climate data combined with raw satellite bands. In-situ data were sourced from a flux station installed in our study area. The data include air temperatures (Ta), global solar radiation (Rg), and measured LE for the period 2015-2018. The study uses Landsat 8 as a remote sensing data source. At first, 12 raw available bands were downloaded. The LST is then derived from thermal bands using the Split Window algorithm (SW) and the NDVI from optical bands. During machine learning modeling, the CatBoost model is fed, trained, and evaluated using the two data combination approaches. Cross-validation of 3-folds gave an average RMSE of 27.54 W.nr2 using the first approach and 27.05 W.nr2 using the second approach. Results raise the question: Do we need additional computational layers when working with remote sensing products combined with machine learning? Future work is to generalize the approach and test it for other applications such as soil moisture retrieval, and yield prediction.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3