Spatial Rigid-Flexible-Liquid Coupling Dynamics of Towed System Analyzed by a Hamiltonian Finite Element Method

Author:

Ding HuaipingORCID,Wang Qiao,Hu Wei,Yin Xiaochun

Abstract

An effective Hamiltonian finite element method is presented in this paper to investigate the three-dimensional dynamic responses of a towed cable-payload system with large deformation. The dynamics of a flexible towed system moving in a medium is a classical and complex rigid-flexible-liquid coupling problem. The dynamic governing equation is derived from the Hamiltonian system and built-in canonical form. A Symplectic algorithm is built to analyze the canonical equations numerically. Logarithmic strain is applied to estimate the large deformation effect and the system stiffness matrix will be updated for each calculation time step. A direct integral solution of the medium drag effect is derived in which the traditional coordinate transformation is avoided. A conical pendulum system and a 180° U-turn towed cable system are conducted and the results are compared with those retraced from the existing Hamiltonian method based on small deformation theory and the dynamic software of Livermore software technology corp. (LS-DYNA). Furthermore, a circularly towed system is analyzed and compared with experimental data. The comparisons show that the presented method is more accurate than the existing Hamiltonian method when large deformation occurred in the towed cable due to the application of logarithmic strain. Furthermore, it is more effective than LS-DYNA to treat the rigid-flexible-liquid coupling problems in the costs of CPU time.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3