A Wind–Wave-Dependent Sea Spray Volume Flux Model Based on Field Experiments

Author:

Xu XingkunORCID,Voermans Joey J.,Ma Hongyu,Guan Changlong,Babanin Alexander V.ORCID

Abstract

Sea spray can contribute significantly to the exchanges of heat and momentum across the air–sea interface. However, while critical, sea spray physics are typically not included in operational atmospheric and oceanic models due to large uncertainties in their parameterizations. In large part, this is because of the scarcity of in-situ sea spray observations which prevent rigorous validation of existing sea spray models. Moreover, while sea spray is critically produced through the fundamental interactions between wind and waves, traditionally, sea spray models are parameterized in terms of wind properties only. In this study, we present novel in-situ observations of sea spray derived from a laser altimeter through the adoption of the Beer–Lambert law. Observations of sea spray cover a broad range of wind and wave properties and are used to develop a wind–wave-dependent sea spray volume flux model. Improved performance of the model is observed when wave properties are included, in contrast to a parameterization based on wind properties alone. The novel in-situ sea spray observations and the predictive model derived here are consistent with the classic spray model in both trend and magnitude. Our model and novel observations provide opportunities to improve the prediction of air–sea fluxes in operational weather forecasting models.

Funder

the US Office of Naval Research Global

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference60 articles.

1. Ocean Spray

2. On the upward flux of sea‐spray spume droplets in high‐wind conditions

3. Modeling the role of sea spray on air-sea heat and moisture exchange;Edson;Final Rep.,1997

4. The effect of sea spray on surface energy transports over the ocean;Fairall;Global Atmos. Ocean Syst.,1994

5. Sea-spray aerosol particles generated in the surf zone

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3